


# **DATASHEET**

**Product Name High-Power Thick Film Chip Resistors** 

Part Name HP Series

File No. SMD-SP-003

## Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.







### 1. Scope

- 1.1 This datasheet is the characteristics of High Power Thick Film Chip Resistors manufactured by UNI-ROYAL.
- 1.2 High power standard size
- 1.3 Suitable for both wave & re-flow soldering
- 1.4 AEC-Q200 qualified
- 1.5 Application: AV adapters, LCD back-light, camera strobe ect.
- 1.6 Compliant with RoHS directive.
- 1.7 Halogen free requirement.

### 2. Part No. System

Part No. includes 14 codes shown as below:

2.1 1st~4th codes: Part name. E.g.: HP02、HP03、HP05、HP06、HP07、HP10、HP11、HP12

2.2 5<sup>th</sup>~6<sup>th</sup> codes: Power rating.

| E.g.: | E.g.: W=Normal Size |     |     | "1~G" = "1~16" |     |      |    |      |    |
|-------|---------------------|-----|-----|----------------|-----|------|----|------|----|
|       | Wattage             | 3/4 | 1/2 | 1/3            | 1/5 | 1/10 | 1  | 1.25 | 2  |
| N     | formal Size         | 07  | W2  | W3             | W5  | WA   | 1W | 1Q   | 2W |

If power rating is equal or lower than 1 watt, 5<sup>th</sup> code would be "W" and 6<sup>th</sup> code would be a number or letter.

E.g.: WA=1/10W

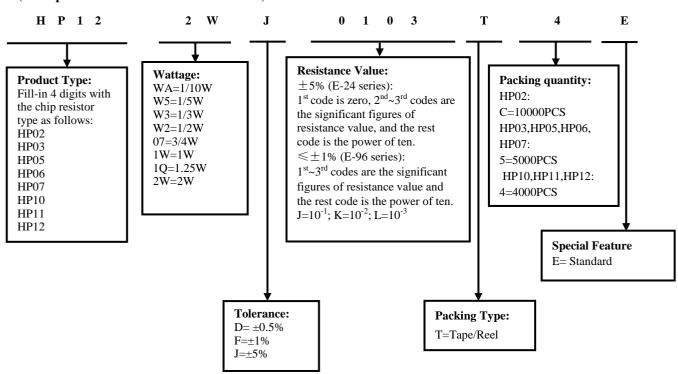
W3=1/3W

- 2.3 7<sup>th</sup> code: Tolerance. E.g.:  $D = \pm 0.5\%$
- F=+1%
- $J=\pm5\%$

- 2.4 8<sup>th</sup>~11<sup>th</sup> codes: Resistance Value.
- 2.4.1 If value belongs to standard value of E-24 series, the 8th code is zero, 9th~10th codes are the significant figures of resistance value, and the 11<sup>th</sup> code is the power of ten.
- 2.4.2 If value belongs to standard value of E-96 series, the 8<sup>th</sup>~10<sup>th</sup> codes are the significant figures of resistance value, and the 11<sup>th</sup> code is the power of ten.
- 2.4.3 11<sup>th</sup> codes listed as following:

 $6=10^6$  $0=10^0$   $1=10^1$  $2=10^{2}$  $3=10^3$  $4=10^4$  $5=10^5$  $J=10^{-1}$ K=10<sup>-2</sup> L=10<sup>-3</sup> M=10<sup>-4</sup>

- 2.5 12<sup>th</sup>~14<sup>th</sup> codes.
- 2.5.1 12<sup>th</sup> code: Packaging Type. E.g.: T=Tape/Reel
- 2.5.2 13<sup>th</sup> code: Standard Packing Quantity.


4=4,000pcs 5=5,000pcs C=10,000pcs

2.5.3 14<sup>th</sup> code: Special features.

E = Standard

### 3. Ordering Procedure

(Example: HP12 2W ±5% 10KΩ T/R-4000)









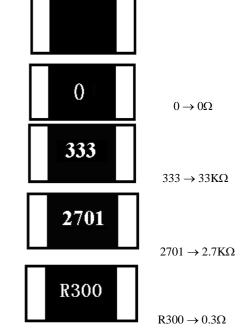
### 4. Marking

4.1 For HP02 size. Due to the very small size of the resistor's body, there is no marking on the body.

4.2 Normally, the making of  $0\Omega$  HP03,  $0\Omega$  HP05,  $0\Omega$  HP06, $0\Omega$  HP07,  $0\Omega$  HP10, $0\Omega$  HP11,  $0\Omega$  HP12 resistors as following

 $4.3~\pm 5\%$  tolerance products (E-24 series):

3 codes.


 $1^{st} \sim 2^{nd}$  codes are the significant figures of resistance value, and the rest code is the power of ten.

4.4  $\pm 0.5\%$ , $\pm 1\%$  tolerance products (E-96 series): 4 codes.

 $1^{st} \sim 3^{rd}$  codes are the significant figures of resistance value, and the rest code is the power of ten.

Letter "R" in mark means decimal point.

4.5 More than HP05 specifications (including) 4 digits, Product below  $1\Omega$ , show as following, the first digit Is "R" which as decimal point.



4.6 Standard E-96 series values of HP03≤±1%: due to the small size of the resistor's body, 3 digits marking will be used to indicate the accurate resistance value by using the following multiplier & resistance code.

Multiplier Grady (for HP02 < +10/2 marking)

Multiplier Code (for HP03  $\leq \pm 1\%$  marking)

| Code       | A        | В               | C        | D        | E               | F               | G        | Н               | X    | Y    | Z                |
|------------|----------|-----------------|----------|----------|-----------------|-----------------|----------|-----------------|------|------|------------------|
| Multiplier | $10^{0}$ | 10 <sup>1</sup> | $10^{2}$ | $10^{3}$ | 10 <sup>4</sup> | 10 <sup>5</sup> | $10^{6}$ | 10 <sup>7</sup> | 10-1 | 10-2 | 10 <sup>-3</sup> |

Standard E-96 series Resistance Value code (for HP03\(\section\) marking)

| Value | Code | Value | Code | Value | Code | Value | Code |
|-------|------|-------|------|-------|------|-------|------|
| 100   | 01   | 178   | 25   | 316   | 49   | 562   | 73   |
| 102   | 02   | 182   | 26   | 324   | 50   | 576   | 74   |
| 105   | 03   | 187   | 27   | 332   | 51   | 590   | 75   |
| 107   | 04   | 191   | 28   | 340   | 52   | 604   | 76   |
| 110   | 05   | 196   | 29   | 348   | 53   | 619   | 77   |
| 113   | 06   | 200   | 30   | 357   | 54   | 634   | 78   |
| 115   | 07   | 205   | 31   | 365   | 55   | 649   | 79   |
| 118   | 08   | 210   | 32   | 374   | 56   | 665   | 80   |
| 121   | 09   | 215   | 33   | 383   | 57   | 681   | 81   |
| 124   | 10   | 221   | 34   | 392   | 58   | 698   | 82   |
| 127   | 11   | 226   | 35   | 402   | 59   | 715   | 83   |
| 130   | 12   | 232   | 36   | 412   | 60   | 732   | 84   |
| 133   | 13   | 237   | 37   | 422   | 61   | 750   | 85   |
| 137   | 14   | 243   | 38   | 432   | 62   | 768   | 86   |
| 140   | 15   | 249   | 39   | 442   | 63   | 787   | 87   |
| 143   | 16   | 255   | 40   | 453   | 64   | 806   | 88   |
| 147   | 17   | 261   | 41   | 464   | 65   | 825   | 89   |
| 150   | 18   | 267   | 42   | 475   | 66   | 845   | 90   |
| 154   | 19   | 274   | 43   | 487   | 67   | 866   | 91   |
| 158   | 20   | 280   | 44   | 499   | 68   | 887   | 92   |
| 162   | 21   | 287   | 45   | 511   | 69   | 909   | 93   |
| 165   | 22   | 294   | 46   | 523   | 70   | 931   | 94   |
| 169   | 23   | 301   | 47   | 536   | 71   | 953   | 95   |
| 174   | 24   | 309   | 48   | 549   | 72   | 976   | 96   |







So the resistance value are marked as the following examples

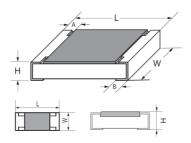


1.96K $\Omega$ =196× $10^{1}$  $\Omega$ =29B



4.7 Standard E-24 and not belong to E-96 series values ( $\leq \pm 1\%$ ) of 0603 size: the marking is the same as 5% tolerance but marking as underline.




<u>333</u>=33ΚΩ



 $680 = 68\Omega$ 

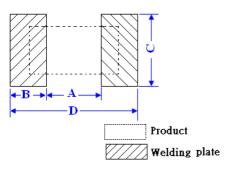
### 5. <u>Dimension</u>

| True       | Dimension(mr | n)              |           |               |           |
|------------|--------------|-----------------|-----------|---------------|-----------|
| Туре       | L            | W               | Н         | A             | В         |
| HP02(0402) | 1.00±0.10    | $0.50\pm0.05$   | 0.35±0.05 | 0.20±0.10     | 0.25±0.10 |
| HP03(0603) | 1.60±0.10    | $0.80\pm0.10$   | 0.45±0.10 | 0.30±0.20     | 0.30±0.20 |
| HP05(0805) | 2.00±0.15    | 1.25+0.15/-0.10 | 0.55±0.10 | $0.40\pm0.20$ | 0.40±0.20 |
| HP06(1206) | 3.10±0.15    | 1.55+0.15/-0.10 | 0.55±0.10 | 0.45±0.20     | 0.45±0.20 |
| HP07(1210) | 3.10±0.10    | 2.50±0.15       | 0.55±0.10 | 0.50±0.25     | 0.50±0.20 |
| HP10(2010) | 5.00±0.10    | 2.50±0.20       | 0.55±0.10 | $0.60\pm0.25$ | 0.50±0.20 |
| HP11(1812) | 4.50±0.20    | 3.20±0.20       | 0.55±0.20 | 0.50±0.20     | 0.50±0.20 |
| HP12(2512) | 6.35±0.10    | 3.20±0.20       | 0.55±0.10 | 0.60±0.25     | 0.50±0.20 |



### 6. Resistance Range

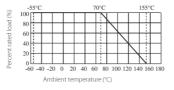
| Туре  | Size | Power<br>Rating | Resistance<br>Range of<br>0.5%,1%,5% | Max.<br>Working<br>Voltage/Current | Max.<br>Overload<br>Voltage/ Current | Dielectric<br>withstanding<br>Voltage | Operating<br>Temperature |  |
|-------|------|-----------------|--------------------------------------|------------------------------------|--------------------------------------|---------------------------------------|--------------------------|--|
| HP02  | 0402 | 1/10W           | $1\Omega\sim10M$                     | 50V                                | 100V                                 | - 100V                                | -55°C~155°C              |  |
| HF02  | 0402 | 1/10 W          | 0Ω:≤10mΩ 3A                          |                                    | 6A                                   | 100 V                                 | -55 C~155 C              |  |
| HP03  | 0603 | 1/5W            | $0.1\Omega\sim10M$                   | 75V                                | 150V                                 | - 300V                                | -55℃~155℃                |  |
| пРОЗ  | 0003 | 1/3 W           | 0Ω:≤8mΩ                              | 5A                                 | 10A                                  | 300 V                                 | -55 C~155 C              |  |
| IID05 | 0005 | 1/3W            | $0.01\Omega{\sim}10M$                | 150V                               | 300V                                 | - 500V                                | -55℃~155℃                |  |
| HP05  | 0805 | 1/3 W           | 0Ω:≤5mΩ                              | 6A                                 | 12A                                  | 300 V -3.                             | -55 C~155 C              |  |
| HP06  | 1206 | 1/2W            | $0.01\Omega{\sim}10M$                | 200V                               | 400V                                 | - 500V                                | -55℃~155℃                |  |
| пРОО  | 1200 | 1/2 VV          | 0Ω:≤5mΩ                              | 10A                                | 20A                                  | - 300 v                               | -33 C~133 C              |  |
| 11007 | 1210 | 2/4337          | $0.1\Omega\sim10M$                   | 200V                               | 500V                                 | 500V                                  | -55℃~155℃                |  |
| HP07  | 1210 | 3/4W            | 0Ω:≤4mΩ                              | 12A                                | 24A                                  | - 500V                                | -55 C~155 C              |  |
| LID10 | 2010 | 1337            | $0.01\Omega\sim10M$                  | 200V                               | 500V                                 | 500X                                  | 55°C 155°C               |  |
| HP10  | 2010 | 1W              | 0Ω:≤5mΩ                              | 12A                                | 24A                                  | 500V                                  | -55°C~155°C              |  |
| HP11  | 1812 | 1.25W           | 0.1Ω~10M                             | 200V                               | 500V                                 | - 500V                                | -55°C~155°C              |  |
| пРП   | 1612 | 1.23 W          | 0Ω:≤5mΩ                              | 12A                                | 24A                                  | - 300 V                               | -33 C~133 C              |  |
| IID12 | 2512 | 2337            | $0.01\Omega\sim10M$                  | 300V                               | 500V                                 | 5001                                  | 55°C 155°C               |  |
| HP12  | 2512 | 2W              | 0Ω:≤5mΩ                              | 16A                                | 32A                                  | 500V                                  | -55°C~155°C              |  |







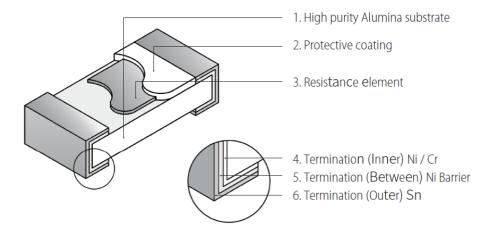

### 7. Soldering pad size recommended


| Truno | Dimension(mm) |              |              |          |  |  |  |  |
|-------|---------------|--------------|--------------|----------|--|--|--|--|
| Type  | A             | В            | C            | D        |  |  |  |  |
| HP02  | $0.5\pm0.05$  | $0.5\pm0.05$ | $0.6\pm0.05$ | 1.5±0.05 |  |  |  |  |
| HP03  | $0.8\pm0.05$  | $0.8\pm0.05$ | $0.9\pm0.05$ | 2.4±0.05 |  |  |  |  |
| HP05  | $1.0\pm0.1$   | $1\pm0.1$    | $1.4\pm0.1$  | 3±0.1    |  |  |  |  |
| HP06  | 2.0±0.1       | 1.1±0.1      | 1.8±0.1      | 4.2±0.1  |  |  |  |  |
| HP07  | 2.0±0.1       | 1.1±0.1      | 2.9±0.1      | 4.2±0.1  |  |  |  |  |
| HP10  | 3.6±0.1       | $1.4\pm0.1$  | 3±0.1        | 6.4±0.1  |  |  |  |  |
| HP11  | 3.0±0.1       | 1.4±0.1      | 3.7±0.1      | 5.8±0.1  |  |  |  |  |
| HP12  | 4.9±0.1       | 1.35±0.1     | 3.7±0.1      | 7.6±0.1  |  |  |  |  |



#### 8. Derating Curve

Power rating will change based on continuous load at ambient temperature from -55 to 155  $^{\circ}$ C. It is constant between -55 to 70  $^{\circ}$ C, and derate to zero when temperature rise from 70 to 155  $^{\circ}$ C. Voltage rating:


Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:  $RCWV = \sqrt{P \times R}$ 



Page 5/9

Remark: RCWV: Rating Continuous Working Voltage (Volt.) P: power rating (Watt) R: nominal resistance ( $\Omega$ ) In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value. The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is lower.

### 9. Structure









## 10. Performance Specification

| Characteristic                            | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ref. Standards                                     | Test Methods                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | ±0.5%,±1%: ±(1.0%+0.1Ω)<br>±5%: ±(3.0%+0.1Ω)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MIL-STD-202                                        | 125°C, at 36% of operating power, 1000H(1.5 hours "ON", 0.5 hour "OFF"). Measurement at 24±4 hours after test conclusion.                                                                                                                                                                                                                                                                  |
| Operational life                          | HP02:<20mΩ;HP03<16 mΩ;<br>HP05 \ HP06 \ HP10 \ HP11 \ HP12:<br><10 mΩ<br>HP07: <8mΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Method 108                                         | Apply to rate current for $0 \Omega$                                                                                                                                                                                                                                                                                                                                                       |
| Electrical<br>Characterization<br>(T.C.R) | HP02: $1\Omega \le R \le 10\Omega : \pm 400 \text{ PPM/}^{\circ}\text{C}$ $10\Omega < R \le 100\Omega : \pm 200 \text{ PPM/}^{\circ}\text{C}$ $10\Omega < R \le 10M : \pm 100 \text{ PPM/}^{\circ}\text{C}$ $100\Omega < R \le 10M : \pm 100 \text{ PPM/}^{\circ}\text{C}$ HP03: $0.1\Omega \le R < 0.2\Omega : \pm 200 \text{PPM/}^{\circ}\text{C}$ 0.2Ω $\le R \le 10M : \pm 100 \text{ PPM/}^{\circ}\text{C}$ HP05: $10m\Omega \le R \le 15m\Omega : \pm 800 \text{ppm/}^{\circ}\text{C}$ $15m\Omega < R \le 25m\Omega : \pm 600 \text{ppm/}^{\circ}\text{C}$ $25m\Omega < R \le 50m\Omega : \pm 400 \text{ppm/}^{\circ}\text{C}$ $50m\Omega < R < 0.1\Omega : \pm 200 \text{ppm/}^{\circ}\text{C}$ $0.1\Omega \le R \le 10M : \pm 100 \text{ppm/}^{\circ}\text{C}$ HP06: $10m\Omega \le R < 15m\Omega : \pm 700 \text{ ppm/}^{\circ}\text{C}$ $15m\Omega \le R < 30m\Omega : \pm 400 \text{ ppm/}^{\circ}\text{C}$ $30m\Omega \le R < 50m\Omega : \pm 300 \text{ ppm/}^{\circ}\text{C}$ $50m\Omega \le R < 0.1\Omega : \pm 150 \text{ ppm/}^{\circ}\text{C}$ $0.1\Omega \le R \le 10M : \pm 150 \text{ ppm/}^{\circ}\text{C}$ $0.1\Omega \le R \le 10M : \pm 100 \text{ ppm/}^{\circ}\text{C}$ HP10: $10m\Omega \le R < 15m\Omega : 0 \sim +800 \text{ ppm/}^{\circ}\text{C}$ $15m\Omega \le R < 50m\Omega : 0 \sim +600 \text{ ppm/}^{\circ}\text{C}$ $15m\Omega \le R < 10M : \pm 100 \text{ ppm/}^{\circ}\text{C}$ HP07. HP11: $\pm 100 \text{PPM/}^{\circ}\text{C}$ HP07. HP00: $10m\Omega \le R < 20m\Omega : 0 \sim +800 \text{ppm/}^{\circ}\text{C}$ $10m\Omega \le R < 20m\Omega : 0 \sim +800 \text{ppm/}^{\circ}\text{C}$ $10m\Omega \le R < 20m\Omega : 0 \sim +400 \text{ppm/}^{\circ}\text{C}$ $20m\Omega \le R \le 50m\Omega : 0 \sim +400 \text{ppm/}^{\circ}\text{C}$ $50m\Omega < R \le 10M : \pm 100 \text{ppm/}^{\circ}\text{C}$ | GB/T 5729 4.8<br>JIS-C-5201 4.8<br>IEC 60115-1 6.2 | Natural resistance changes per temp. Degree centigrade $\frac{R_2\text{-}R_1}{R_1(t_2\text{-}t_1)} \times 10^6  (\text{PPM/°C})$ $R_1: \text{Resistance Value at room temperature } (t_1) \; ;$ $R_2: \text{Resistance at test temperature } (t_2)$ $t_1: +25^{\circ}\text{C or specified room temperature}$ $t_2: \text{Test temperature } (-55^{\circ}\text{C or } 125^{\circ}\text{C})$ |
| Short-time                                | ±0.5%,±1%: ±(1.0%+0.1Ω)<br>±5%: ±(2.0%+0.1Ω)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GB/T 5729 4.13<br>JIS-C-5201 4.13                  | Permanent resistance change after the application of a potential of 2.5 times RCWV or Max. Overload Voltage whichever less for 5 seconds                                                                                                                                                                                                                                                   |
| overload                                  | HP02: ≤10mΩ;HP03≤8 mΩ;<br>HP05、HP06、HP10、HP11、HP12:<br>≤5mΩ<br>HP07: ≤4mΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IEC 60115-1 8.1.4.2                                | Apply max Overload current for $0\Omega$                                                                                                                                                                                                                                                                                                                                                   |
| External Visual                           | Marking Complete , no mechanical damage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MIL-STD-883<br>Method 2009                         | Electrical test not required. Inspect device construction, marking and workmanship                                                                                                                                                                                                                                                                                                         |
| Physical<br>Dimension                     | Reference 5 Dimension Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JESD22 MH Method<br>JB-100                         | Verify physical dimensions to the applicable device detail specification.  Note: User(s) and Suppliers spec. Electrical test not required.                                                                                                                                                                                                                                                 |
| Resistance to Solvent                     | Marking Complete , no mechanical damage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MIL-STD-202<br>Method 215                          | Note: Add Aqueous wash chemical – OKEM Clean or equivalent. Do not use banned solvents.                                                                                                                                                                                                                                                                                                    |
| Terminal Strength                         | Not broken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AEC-Q200-006                                       | HP02:5N; others:17.7N, 60±1 seconds.                                                                                                                                                                                                                                                                                                                                                       |
| High Temperature                          | ±0.5%,±1%: ±(1.0%+0.1Ω)<br>±5%: ±(3.0%+0.1Ω)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MIL STD 202                                        | 1000hrs @T-155°C Unraward Marine                                                                                                                                                                                                                                                                                                                                                           |
| Exposure (Storage)                        | HP02: ≤10mΩ;HP03≤8 mΩ;<br>HP05、HP06、HP10、HP11、HP12:<br>≤5mΩ<br>HP07: ≤4mΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MIL-STD-202<br>Method 108                          | 1000hrs. @T=155°C.Unpowered. Measurement at 24±4 hours after test conclusion.                                                                                                                                                                                                                                                                                                              |

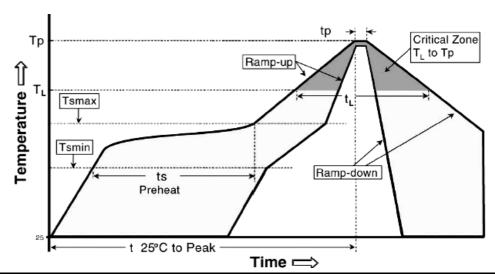






|                        | $\pm (1.0\% + 0.05\Omega)$                                                                                                                    |                           |                                                                                                                                                                                                                                                                                                |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Temperature<br>Cycling | HP02: ≤10mΩ;HP03≤8 mΩ;<br>HP05、HP06、HP10、HP11、HP12:<br>≤5mΩ<br>HP07: ≤4mΩ                                                                     | JESD22 Method JA-<br>104  | 1000 Cycles (-55°C to +155°C). Measurement at 24±4 hours after test conclusion.                                                                                                                                                                                                                |  |  |
| D' I                   | ±0.5%,±1%: ±(1.0%+0.05Ω)<br>±5%: ±(3.0%+0.05Ω)                                                                                                | MIL CTD 202               | 1000 hours 85 °C,85%RH.  Note: Specified conditions: 10% of operating power.  Measurement at 24±4 hours after test conclusion.                                                                                                                                                                 |  |  |
| Biased<br>Humidity     | $HP02$ : $\leq 10m\Omega$ ; $HP03\leq 8m\Omega$ ;<br>HP05、 $HP06$ 、 $HP10$ 、 $HP11$ 、 $HP12$ :<br>$\leq 5m\Omega$<br>$HP07$ : $\leq 4m\Omega$ | MIL-STD-202<br>Method 103 | Apply to rate current for $0 \Omega$                                                                                                                                                                                                                                                           |  |  |
|                        | ±0.5%,±1%: ±(1.0%+0.1Ω)<br>±5%: ±(2.0%+0.1Ω)                                                                                                  |                           |                                                                                                                                                                                                                                                                                                |  |  |
| Mechanical<br>Shock    | HP02: $\leq$ 10mΩ;HP03 $\leq$ 8 mΩ;<br>HP05、HP06、HP10、HP11、HP12:<br>$\leq$ 5mΩ<br>HP07: $\leq$ 4mΩ                                            | MIL-STD-202<br>Method 213 | Half sine wave, acceleration 100g's, each three times in X, Y and Z directions, pulse width 6ms.                                                                                                                                                                                               |  |  |
|                        | ±0.5%,±1%: ±(1.0%+0.1Ω)<br>±5%: ±(2.0%+0.1Ω)                                                                                                  |                           | 5g's for 20 min., 12cycle each of 3 orientations.<br>Note: Use 8"*5"PCB. 031" thick 7 secure points                                                                                                                                                                                            |  |  |
| Vibration              | $HP02$ : $\leq 10m\Omega$ ; $HP03\leq 8m\Omega$ ; $HP05$ 、 $HP06$ 、 $HP10$ 、 $HP11$ 、 $HP12$ : $\leq 5m\Omega$ $HP07$ : $\leq 4m\Omega$       | MIL-STD-202<br>Method 204 | onone long side and 2 secure points at corners of opposite sides. Parts mounted within 2' from any secure point. Test from 10-2000Hz.                                                                                                                                                          |  |  |
| ESD                    | ±(3.0%+0.1Ω)                                                                                                                                  | AEC-Q200-002              | With the electrometer in direct contact with the discharge tip, verify the voltage setting at levels of $\pm 500\text{V}, \pm 1\text{KV}, \pm 2\text{KV}, \pm 4\text{KV}, \pm 8\text{KV}$ , The electrometer reading shall be within $\pm 10\%$ for voltages from 500V to $\leq 800\text{V}$ . |  |  |
| Solderability          | Coverage must be over 95%.                                                                                                                    | J-STD-002                 | For both leaded & SMD. Electrical test not required. Magnification 50X. Conditions:  a) Method B 4hrs at 155 °C dry heat, the dip in bath with 245±3 °C,5±0.5s. b) Method D: at 260±3 °C, 30±0.5s                                                                                              |  |  |
| Flammability           | No ignition of the tissue paper or scorching or the pinewood board                                                                            | UL-94                     | V-0 or V-1 are acceptable. Electrical test not required.                                                                                                                                                                                                                                       |  |  |
|                        | $\pm (1.0\% + 0.05\Omega)$                                                                                                                    |                           |                                                                                                                                                                                                                                                                                                |  |  |
| Board Flex             | HP02: $\leq$ 10mΩ;HP03 $\leq$ 8 mΩ;<br>HP05、HP06、HP10、HP11、HP12:<br>$\leq$ 5mΩ<br>HP07: $\leq$ 4mΩ                                            | AEC-Q200-005              | Bending 2mm(min) for 60+5sec                                                                                                                                                                                                                                                                   |  |  |
| Flame Retardance       | No flame                                                                                                                                      | AEC-Q200-001              | Only requested, when voltage/power will increase the surface temp to 350°C.Apply voltage from 9V to 32V. No flame; No explosion.                                                                                                                                                               |  |  |
| Resistance to          | ±(1.0%+0.05Ω)                                                                                                                                 | MIL-STD-202               | Condition B No per-heat of samples.  Dipping the resistor into a solder bath having a                                                                                                                                                                                                          |  |  |
| Soldering Heat         | $HP02$ : $\leq 10m\Omega$ ; $HP03\leq 8m\Omega$ ; $HP05$ 、 $HP06$ 、 $HP10$ 、 $HP11$ $HP12$ : $\leq 5m\Omega$ $HP07$ : $\leq 4m\Omega$         | Method 210                | temperature of 260 $^{\circ}\text{C}\pm5^{\circ}\text{C}$ and hold it for 10±1 seconds                                                                                                                                                                                                         |  |  |



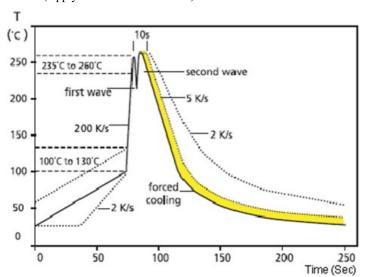





### 11. Soldering Condition

### (This is for recommendation, please customer perform adjustment according to actual application)

11.1 Recommend Reflow Soldering Profile: (solder: Sn96.5 / Ag3 / Cu0.5)




| Profile Feature                                                          | Lead (Pb)-Free solder |
|--------------------------------------------------------------------------|-----------------------|
| Preheat:                                                                 |                       |
| Temperature Min (Ts <sub>min</sub> )                                     | 150℃                  |
| Temperature Max (Ts <sub>max</sub> )                                     | 200℃                  |
| Time ( $Ts_{min}$ to $Ts_{max}$ ) (ts)                                   | 60 -120 seconds       |
| Average ramp-up rate:                                                    |                       |
| (Ts max to Tp)                                                           | 3°C / second max.     |
| Time maintained above :                                                  |                       |
| Temperature (T <sub>L</sub> )                                            | 217℃                  |
| Time (t <sub>L</sub> )                                                   | 60-150 seconds        |
| Peak Temperature (Tp)                                                    | 260℃                  |
| Time within $^{+0}_{-5}$ °C of actual peak Temperature (tp) <sup>2</sup> | 10 seconds            |
| Ramp-own Rate                                                            | 6°C/second max.       |
| Time 25°C to Peak Temperature                                            | 8minutes max.         |

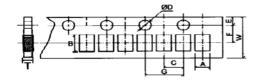
Allowed Re-flow times: 2 times

Remark : To avoid discoloration phenomena of chip on terminal electrodes, we suggest use  $N_2$  Re-flow furnace .

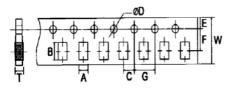
### 11.2 Recommend Wave Soldering Profile: (Apply to 0603 and above size)





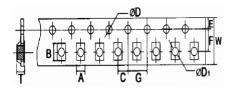






### 12. Packing

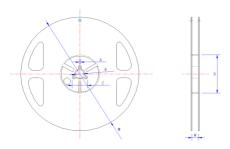
### 12.1 Dimension of Paper Taping: (Unit: mm)

| Type | A<br>±0.1 | B<br>±0.1 | C<br>±0.05 | $\Phi D_{-0}^{+0.1}$ | E<br>±0.1 | F<br>±0.05 | G<br>±0.1 | W<br>±0.2 | T<br>±0.05 |
|------|-----------|-----------|------------|----------------------|-----------|------------|-----------|-----------|------------|
| HP02 | 0.65      | 1.20      | 2.00       | 1.50                 | 1.75      | 3.5        | 4.00      | 8.0       | 0.42       |




| TYPE | A<br>±0.2 | B<br>±0.2 | C<br>±0.05 | $\Phi D_{-0}^{+0.1}$ | E<br>±0.1 | F<br>±0.05 | G<br>±0.1 | W<br>±0.2 | T<br>±0.10 |
|------|-----------|-----------|------------|----------------------|-----------|------------|-----------|-----------|------------|
| HP03 | 1.10      | 1.90      | 2.00       | 1.50                 | 1.75      | 3.5        | 4.00      | 8.00      | 0.67       |
| HP05 | 1.65      | 2.40      | 2.00       | 1.50                 | 1.75      | 3.5        | 4.00      | 8.00      | 0.81       |
| HP06 | 2.00      | 3.60      | 2.00       | 1.50                 | 1.75      | 3.5        | 4.00      | 8.00      | 0.81       |
| HP07 | 2.80      | 3.50      | 2.00       | 1.50                 | 1.75      | 3.5        | 4.00      | 8.00      | 0.75       |




### 12.2 Dimension of plastic taping: (Unit: mm)

| Type | A<br>±0.2 | B<br>±0.2 | C<br>±0.05 | ΦD <sup>+0.1</sup> | ФD1 <sup>+0.25</sup> | E<br>±0.1 | F<br>±0.05 | G<br>±0.1 | W<br>±0.2 | T<br>±0.1 |
|------|-----------|-----------|------------|--------------------|----------------------|-----------|------------|-----------|-----------|-----------|
| HP10 | 2.9       | 5.6       | 2.0        | 1.5                | 1.5                  | 1.75      | 5.5        | 4.0       | 12.0      | 1.0       |
| HP11 | 3.5       | 4.8       | 2.0        | 1.5                | 1.5                  | 1.75      | 5.5        | 4.0       | 12.0      | 1.0       |
| HP12 | 3.5       | 6.7       | 2.0        | 1.5                | 1.5                  | 1.75      | 5.5        | 4.0       | 12.0      | 1.0       |



### 12.3 Dimension of Reel: (Unit: mm)

| Type | Taping   | Qty/Reel  | A±0.5 | B±0.5 | C±0.5 | ΦD±1 | ΦL±2  | W±1  |
|------|----------|-----------|-------|-------|-------|------|-------|------|
| HP02 | Paper    | 10,000pcs | 2.0   | 13.0  | 21.0  | 60.0 | 178.0 | 10.0 |
| HP03 | Paper    | 5,000pcs  | 2.0   | 13.0  | 21.0  | 60.0 | 178.0 | 10.0 |
| HP05 | Paper    | 5,000pcs  | 2.0   | 13.0  | 21.0  | 60.0 | 178.0 | 10.0 |
| HP06 | Paper    | 5,000pcs  | 2.0   | 13.0  | 21.0  | 60.0 | 178.0 | 10.0 |
| HP07 | Paper    | 5,000pcs  | 2.0   | 13.0  | 21.0  | 60.0 | 178.0 | 10.0 |
| HP10 | Embossed | 4,000pcs  | 2.0   | 13.0  | 21.0  | 60.0 | 178.0 | 13.8 |
| HP11 | Embossed | 4,000pcs  | 2.0   | 13.0  | 21.0  | 60.0 | 178.0 | 13.8 |
| HP12 | Embossed | 4,000pcs  | 2.0   | 13.0  | 21.0  | 60.0 | 178.0 | 13.8 |



### 13. Note

- 13.1. UNI-ROYAL recommend the storage condition temperature:  $15\,^{\circ}\text{C} \sim 35\,^{\circ}\text{C}$ , humidity : $25\% \sim 75\%$ .
  - (Put condition for individual product). Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) may be degraded.
- 13.2. Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.
  - Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 13.3. Product performance and soldered connections may deteriorate if the products are stored in the following places:
  - a. Storage in high Electrostatic.
  - b. Storage in direct sunshine ' rain and snow or condensation.
  - c. Where the products are exposed to sea winds or corrosive gases, including Cl<sub>2</sub>, H<sub>2</sub>S<sub>3</sub> NH<sub>3</sub>, SO<sub>2</sub>, NO<sub>2</sub>, Br etc.

### 14. Record

| Version | Description                                                                                                                                         | Page     | Date         | Amended by  | Checked by  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|-------------|-------------|
| 1       | First version                                                                                                                                       | 1~8      | May.22, 2020 | Haiyan Chen | Yuhua Xu    |
| 2       | <ol> <li>Add 0603 Marking</li> <li>Add 0Ω the greater than the Max<br/>Overload Curren</li> <li>Modify terminal strength test conditions</li> </ol> | 3~4<br>4 | Sep.19, 2022 | Haiyan Chen | Yuhua Xu    |
| 3       | Modify ESD test                                                                                                                                     | 7        | Feb.19, 2024 | Song Nie    | Haiyan Chen |
| 4       | Modify temperature cycling test                                                                                                                     | 5        | Aug.10, 2024 | Haiyan Chen | Yuhua Xu    |
| 5       | The IEC60115 reference standard is modified                                                                                                         | 6        | Oct.30, 2024 | Haiyan Chen | Yuhua Xu    |
| 6       | 1.Add the ±0.5% tolerance<br>2.Modify the "W" dimension of HP07                                                                                     | 2,4<br>4 | Apr.17, 2025 | Haiyan Chen | Yuhua Xu    |

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice